圆锥(台)形人造山体地基竖向附加应力及沉降
作者:
作者单位:

同济大学 土木工程学院,上海 200092

作者简介:

高彦斌(1973—),男,副教授,博士生导师,工学博士,主要研究方向为软黏土土质学、土力学及软土工程。 E-mail: yanbin_gao@tongji.edu.cn

通讯作者:

基金项目:

国家自然科学基金(41972273)


Vertical Additional Stress and Settlement of the Conical and Truncated Cone Shaped Artificial Mountain Foundation
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    采用布辛涅斯克解,给出了圆锥形和圆台形荷载作用下地基中心竖向附加应力计算公式,发现竖向附加应力随深度衰减要远大于其他类型荷载下的结果;采用弹性有限元法,给出了圆锥形荷载作用下地基中任意位置的竖向附加应力系数图,解决了圆锥和圆台荷载下任意位置竖向附加应力以及地表沉降的计算问题。工程案例验证了采用该方法给出轴对称附加应力解的必要性;并通过一个算例分析了两个圆锥形山体作用下地基的竖向附加应力和地表沉降的相互影响规律。

    Abstract:

    By using the Boussinesq solution, the formulas for calculating the vertical additional stress of the foundation center under the action of conical and truncated cone shaped load were given. The attenuation of vertical additional stress with depth was found much greater than that under other types of loads. By using the elastic finite element method, the vertical additional stress coefficient diagram of any position of foundation under the action of conical load was given, and the calculation problems of vertical additional stress and ground settlement at any position under the conical and truncated cone shaped load were solved. A case study was carried out to testify the necessity of using the proposed method to give the axisymmetric additional stress solution. Furthermore, a calculation example was given to analyze the mutual influence rule between the vertical additional stress of the foundation and the surface settlement under the action of two conical mountains.

    参考文献
    相似文献
    引证文献
引用本文

高彦斌,姚天骄.圆锥(台)形人造山体地基竖向附加应力及沉降[J].同济大学学报(自然科学版),2020,48(7):945~952

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-09-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-04