基于阻抗特性的动力电池系统电磁干扰仿真与测试
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

张戟(1967—),男,副教授,博士生导师,工学博士,主要研究方向为电动汽车电磁噪声抑制、电磁仿真及控 制算法。E-mail: jizhang@tongji.edu.cn

通讯作者:

吕相杰(1995—),男,硕士生,主要研究方向为电机EMC仿真。E-mail: 1125279242@qq.com

基金项目:

上海汽车工业科技发展基金(1732)


Electromagnetic Interference Simulation and Test of Power Battery System Based on Impedance Characteristics
Author:
Affiliation:

College of Automotive Studies,Tongji University,Shanghai 201804,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    以锂离子动力电池单体为研究对象,测量不同频段下电池单体的阻抗特性以表征电池特性,并采用电气模型进行全频段阻抗特性拟合,结合电池单体及BUSBAR阻抗特性,建立整个动力电池包的电气特性模型。电驱系统是汽车上主要的电磁干扰源,在研究分析电机特性及控制策略的基础上,建立包括电驱系统在内的动力电池系统电磁干扰模型。通过仿真获取动力电池系统直流母线上的总电流变化,并与实车测试结果进行对比验证。对研究动力电池系统自身的电磁干扰及其影响机理,正确及时地发现潜在电磁干扰问题并加以解决,提高电池包系统、整车性能及增强系统运行可靠性有着重要意义。

    Abstract:

    By taking the lithium-ion power battery cell as the research object, the impedance characteristics of the battery cell in different frequency bands are measured to characterize the battery characteristics, and the electrical model is used to fit the impedance characteristics of the entire frequency band, and the impedance characteristics of the battery cell and BUSBAR are combined to establish the entire power. The electrical characteristics model of the battery pack. The electric drive system is the main source of electromagnetic interference in automobiles. On the basis of research and analysis of motor characteristics and control strategies, the electromagnetic interference model of the power battery system including the electric drive system is established. The total current change on the DC bus of the power battery system is obtained through simulation and compared with the actual vehicle test results. This paper is of great significance to study the electromagnetic interference and its influence mechanism of the power battery system itself, to find and solve potential electromagnetic interference problems in a timely and correct manner, and to improve the performance of the battery pack system, the vehicle and the reliability of the system.

    表 2 N与扇区的对应关系Table 2
    表 1 锂电池电化学阻抗拟合参数Table 1
    图1 电化学阻抗谱测量设备Fig.1 Electrochemical impedance spectrum measuring equipment
    图2 锂离子电池电化学阻抗谱测量结果Fig.2 Measurement results of electrochemical impedance spectrum of lithium ion battery
    图3 锂离子电池低频的等效电路模型Fig.3 Equivalent circuit model of low frequency for lithium ion battery
    图4 锂离子电池电化学阻抗谱实测和拟合结果Fig.4 Measurement and fitting results of electrochemical impedance spectrum of lithium ion battery
    图5 锂离子电池中频阻抗特性测量结果Fig.5 Measurement results of the intermediate frequency impedance characteristics of lithium ion batteries
    图6 锂离子电池中频阻抗特性数学模型拟合结果Fig.6 Fitting results of the mathematical model of the lithium-ion battery’s intermediate frequency impedance characteristics
    图7 锂离子电池中频阻抗特性等效电路拟合结果Fig.7 Equivalent circuit fitting results of lithium-ion battery intermediate frequency impedance characteristics
    图8 锂离子电池高频阻抗特性测量结果Fig.8 Measurement results of high-frequency impedance characteristics of lithium-ion batteries
    图9 锂电池单体的寄生电感和寄生电容频谱曲线Fig.9 Spectral curves of the parasitic inductance and parasitic capacitance of a lithium battery cell
    图10 锂离子电池高频阻抗等效电路Fig.10 High-frequency impedance equivalent circuit of lithium-ion battery
    图11 锂离子电池高频阻抗特性等效电路拟合结果Fig.11 Equivalent circuit fitting results of high-frequency impedance characteristics of lithium-ion batteries
    图12 锂离子电池全频阻抗特性等效电路拟合结果Fig.12 Fitting result of equivalent circuit of full-frequency impedance characteristic of lithium ion battery
    图13 BUSBAR高频阻抗特性测试图Fig.13 BUSBAR high frequency impedance characteristic test chart
    图14 BUSBAR高频阻抗等效电路Fig.14 BUSBAR high-frequency impedance equivalent circuit
    图15 BUSBAR高频阻抗特性等效电路拟合结果Fig.15 BUSBAR high-frequency impedance characteristic equivalent circuit fitting results
    图16 电压空间矢量图Fig.16 Voltage space vector
    图18 产生PWM波Fig.18 Generate PWM wave
    图19 SVPWM波形产生模块Fig.19 SVPWM waveform generation module
    图20 PMSM最大转矩电流比控制原理Fig.20 PMSM maximum torque current ratio control principle
    图21 加减速工况下的车速随时间变化Fig.21 Change of vehicle speed with time under acceleration and deceleration conditions
    图22 电动机的外特性曲线Fig.22 External characteristic curve of the motor
    图23 电动机输入转矩曲线Fig.23 Motor input torque curve
    图24 电动机输入转速曲线Fig.24 Motor input speed curve
    图25 PMSM最大转矩电流比控制模型Fig.25 PMSM maximum torque current ratio control model
    图26 动力电池系统电磁仿真模型Fig.26 Electromagnetic simulation model of power battery system
    图27 电驱系统仿真电机输出转矩和转速结果Fig.27 The output torque and speed of the simulated motor of the electric drive system
    图28 电动汽车实车工况数据采集布置总图Fig.28 General layout of data collection for electric vehicle actual vehicle operating conditions
    图29 电池包两端母线电流仿真与测试对比Fig.29 Comparison of current simulation and test on both sides of the battery pack
    参考文献
    相似文献
    引证文献
引用本文

张戟,吕相杰,吕钰.基于阻抗特性的动力电池系统电磁干扰仿真与测试[J].同济大学学报(自然科学版),2020,48(12):1797~1809

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-08-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-31